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Introduction

Genome and sequencing projects are yielding an
exponentially growing amount of protein sequence data [1,2].
To understand their structure and function, protein model-
ling efforts have become an important tool [3]. Better pro-
tein structure and function prediction techniques are a focus
of current research (reviewed in [4-6]).

For this challenge we apply and refine protein models
using genetic algorithm simulations. We show recent im-
provements considering folding forces and search strategy
in simplified models. Incorporation into full main chain mod-

els is possible. After further development these will allow a
more detailed description of protein-protein and protein-sol-
vent interactions. In fact, many protein interactions can be
supported and new ones become apparent from genome com-
parisons of gene order, as we illustrate here for Helicobacter
pylori.

However, for the high demand in three dimensional mod-
els of proteins from genome projects more immediate strat-
egies are also desirable. For this, we improve grid free main
chain genetic algorithm folding simulations by independent
criteria to judge structure fitness at the end of the simula-
tion and apply the full main chain protein simulations to
genomics. A genetic algorithm model of the extracellular
globular domain of an extended protein family revealed from
genome analysis of H. pylori is shown as an example.
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Materials and methods

HP model

To investigate refined search strategies, genetic algorithm
simulations were conducted in the context of the simplified
HP model [7]. The HP model derives its name from the two
types of residues which are only considered: polar/hydrophilic
(P) and non-polar/hydrophobic (H). The protein folding space
is simplified to a self avoiding random walk on a 2D or 3D
square lattice. We use a simple energy scoring function [8] of
minus one for any two hydrophobic residues directly con-
tacting each other on the lattice (no diagonal contacts were
counted).

Monte Carlo simulations

Monte Carlo simulations on entropy of the solvent were also
tested in the context of the HP model. To study entropy ef-
fects, lattice spaces adjacent to the protein chain were mod-
elled to be filled by solvent, called (small) water ensembles
in the following. Long range interactions in the rest of the
solvent (e.g. long range order brought about by solvating ions
or exposed polar groups) were not considered in this simple
model. Small water ensembles with two different properties
surrounded the model protein: ordered and less ordered. The
ordered water ensembles are adjacent to hydrophobic resi-
dues or the solvent (i.e. other water ensembles). The less or-
dered (with high entropy) exist if no hydrophobic residue is
adjacent to them. The number of unordered water ensem-
bles, Ni, was counted. It has been shown experimentally that
hydrophobic molecules reduce the entropy of surrounding
(aqueous) solvent [9]. The solvent entropy difference, S, be-
tween one protein chain conformation N1 and a tested next
one N2 during the simulation was set to be proportional to
the difference in the number of unordered adjacent lattice
spaces counted. With the order parameter f (to be optimised)
the probability for the new configuration to be chosen gets: p
~ e(TS/T) = f(N1-N2). This implementation regards the entropy of
the solvent according to Boltzmann statistics. The simple en-
ergy function from above is derived again (minus one for any
hydrophobic contact), if the sum (“hydrogen bonds” in our
model) of the connections of (water ensembles - water en-
sembles) and (water ensembles - hydrophilic residues) is
counted and compared between two conformations.

The order parameter f allowed testing of different entropy
weights during simulations, either alone or multiplying the
fN1-N2 term with e(-∆E/T) yielding p ~ e-F/T = e(∆E - TS)/T to con-
sider also the energy difference ∆E between two chain con-
formations. F denotes the Helmholtz free energy (correspond-
ing also to the Gibbs free energy if changes of volume and
pressure are neglected). The new chain conformation was
accepted if a random number between zero and 1/constant
was smaller than e-F/T .

The free energy function above was used with an artifi-
cial temperature T which was slowly decreased during the
simulation, analogue to the simulated annealing method [10].

This model allowed examining of both entropy (∆S, dif-
ference of ordered small water ensembles) and energy ef-
fects (∆E; simplified in the context of the model; only hydro-
phobic interactions are considered or, alternatively, the ef-
fect of “hydrogen bonds”).

Main chain protein folding simulations

These are grid free simulations. The protein main chain
(N,Cα,C’ and O) is modelled using internal coordinates and a
set of seven standard conformations to assign φ and ψ values
to the backbone [4]. The conformations of all residues along
the amino acid sequence were successively collected together
and decoded from a long bit-string (a ”chromosome”). Start-
ing from a population of random bit-strings, the quality of
each encoded structure was judged by a fitness function com-
posed of rewards and punishments. Five structure parameters,
suitably weighted (further details in [11,12]) were calculated
and summed up to judge structural fitness:

1) the total scatter of all (n) residue Cα-atoms (res), each
(i) with (j) coordinates (x and y and z) around the common
centre of mass (Cm), is considered (it is summed over all
distances; the individual distance to the centre of mass for
each residue, its radius of gyration, is calculated as the square
root of the x, y and z component distance square):
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Figure 1 Peptide structure and solvent model on a three
dimensional lattice. Hydrophobic residues are shown in red,
hydrophilic in grey. Adjacent solvent water molecules are
represented as blue („unordered“, directly adjacent to a hy-
drophilic residue of the protein chain) and green balls (more
ordered, adjacent to a hydrophobic residue of the protein
chain)
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2) distribution of hydrophobic residues only
(M,I,L,V,Y,C,F and W; hydrophobicity scale according to
[13]) around the centre of mass (same centre as in 1) );

3) main chain van-der-Waals atomic overlaps;
4) conformational states which agree with the secondary

structure (either known or predicted) for a given subsequence
and

5) the selection for the formation of hydrogen bonds in ß-
strands and ß-sheets and the formation of reverse turns in ß-
hairpins.

Information from secondary structure prediction on heli-
ces and strands was utilised with residues found in such con-
figurations kept fixed in appropriate standard conformations
[14] during the simulation. All other residues were not fixed
in the simulations, the genetic algorithm operated freely on
all other residues.

Genetic algorithm simulation conditions

High quality bit-strings (after a random start) were selected
preferentially as parents and mutated (one bit per string per
generation) and recombined through cross-over (probability

of recombination is 0.2 per bit string per generation and oc-
curs at exactly one equivalent site chosen at random on each
of the parental chromosome pairs) to yield the next parental
generation of folds. A positive constant keeps the population
of prediction trials richer since low fitness individuals may
also survive. Simulations were run over many generations to
allow convergence (the product of population and generation
equalled at least 4 x 105, corresponding to a processing time
for main chain simulation runs of 20 minutes on a VAX 7620
for a 46-residue protein). The best fold comparing the fittest
individuals from ten runs with different random starts yielded
the prediction in the full main chain simulations, at least 100
simulations were considered in the HP model simulations.

Test set

The following test set of small proteins with known three
dimensional structure was used in the main chain folding
simulations:

1IFM, 1PNH, 1PPT, 2OVO, 1MLI, 1EGL, 1HMD, 1GPT,
1EPR, 1DFN, 2CCY, 1CRO, 1CRN, 1TCG, 2CRD, 2BUS,

Figure 2 Entropy simula-
tion. Lattice simulations of a
small protein chain (12 resi-
dues) are compared with a) a
strong weight (order param-
eter f = 0.1) and b) a weak
weight (order parameter f =
0.3) on entropy of the solvent.
x-axis: Simulation step coor-
dinate, each time 100000
steps were effected. y-axis:
Energy values (number of
hydrophobic contacts; calcu-
lated as described in Materi-
als and Methods)

(a)

(b)
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7PTI, 1BBI, 256B, 1ATX, 2GB1, all with different topology
and known three dimensional structure.

Results and discussion

Refinement of protein models by representation of forces
such as entropy

A more detailed modelling of folding forces such as entropic
forces is desirable for protein models and to describe pro-
tein-protein interactions. This concerns for instance antigen-
antibody contacts. Many more protein-protein complexes can
be predicted from genome analysis by identification of con-
served gene pairs (see application to genomics).

Simplified models we investigate use the HP model and a
Monte Carlo algorithm to compare the results of different
strengths of solvent entropic forces on a protein fold. The HP
model folds a protein chain on a lattice, considering only
two types of residues, hydrophobic (H) and hydrophilic (P)
[7].

Figure 1 shows the native fold of a small model peptide
studied. Red balls and sticks represent hydrophobic residues,
grey ball-and-stick representation shows hydrophilic residues.

The solvent water molecules are represented in small ensem-
bles and shown as blue and green balls. Green balls represent
more ordered water ensembles, which exist if hydrophobic
residues are adjacent, whereas the blue balls represent less
ordered water ensembles, not adjacent to any hydrophobic
residue. The native fold of this small model structure is known.

Two model simulations (Figure 2) demonstrate different
stability shown by the energy values obtained during succes-
sive simulation steps. They model two different parameter
settings of the entropy. In Figure 2a the effect of strong
entropic forces is modelled (order parameter f set to 0.1, see
Materials and methods). The simulation (which in theese tri-
als continues even if the global minimum has been found)
stays most of the time in the global minimum, however, some-
times significant deviations and unfolding of the native struc-
ture are observed.

In contrast, setting the entropic forces low in the simula-
tions (Figure 2b; order parameter f = 0.3), the global mini-
mum is reached more slowly in the particular simulation
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Figure 3 Fitness per residue in genetic algorithm protein
folding simulations. Simulations with good topology predic-
tion and maximum RMSD of 5-6 Å are shown as filled green
circles, the green line shows their regression line; failed simu-
lations, violating one or both criteria, are shown as filled red
squares. x-axis: protein size according to the number of resi-
dues. y-axis: normalized fitness per residue (fitness criteria
as in Materials and methods)

Figure 4 Genome analysis. Some applications of our mod-
elling efforts in genome analysis are sketched. This includes
description of cytoplasmic protein domains in new recognized
members of protein families (top) as well as models for the
domains of interacting proteins (bottom)
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shown. However, the protein structure is more flexible and
though it returns to the global minimum, on average the pro-
tein is often in a more unfolded state than in the simulations
with strong entropy.

Even though simplistic, these and similar simulations are
helpful to study the effect of different forces for protein fold-
ing such as the effect of solvent entropy, details of the hydro-
phobic packing, identification of the native state and protein
stability. Furthermore, the strength of both entropic and hy-
drophobic forces are easily quantified including time spent
in different folded and unfolded states for a specific chain
type. For full main chain simulations using the genetic algo-
rithm (see Materials and Methods) the neighbouring water
molecules will next be approximated by a water shell around
the protein. Different weights of the entropic forces as de-
scribed and tested above can directly be implemented as an
additive term to the fitness function and next be optimised as
an additional selection criterion. The incorporation of entropic
forces to model protein interactions should allow a more de-
tailed examination and modelling of protein interactions such
as revealed by genome analysis of H. pylori (see application
to genomics).

Refinement of the genetic algorithm search strategy by
pioneer search and systematic recombination

Apart from a more detailed representation of folding forces,
improved simulation results may be expected from a refined
search strategy. This is again conveniently tested in the HP
model as many simulations can be run quickly and compared.
One challenge for genetic algorithm simulations is to keep
the population of solution trials sufficiently rich and diverse
[15,16]. Motivated by concepts such as Taboo search [17],
we examined different modifications of the genetic algorithm
strategy. After investigating a number of alternative strate-
gies, two search strategies yielded an improvement in search
performance (see schemes 1 and 2).

One strategy, “pioneer search” [8] explores new regions
of the search space forming “pioneering” individuals if the
population is not rich enough (Scheme 1). Every ten genera-
tions the newly created individuals are tested to see if they

differ from every individual of the parent population. Indi-
viduals are discarded if they do not differ. In contrast to ta-
boo search [17], this strategy seems only to have a short term
memory as only the one generation back is considered to
form new individuals to explore new search space. However,
these parent individuals represent by their survival a long
term memory from the past. The condition to be at least in
one detail different from the whole previous population pushes
forward into new search space while keeping longer memory
in those individuals which are only minimally different from
the previous population. In our simulations this was suffi-
cient to prevent oscillations between reoccurring populations.
The strategy  is now examined further. It yields a gain in
searching for different  HP-chains, e.g. 14% less evaluations
to find the global minimum for a 20 residue chain on a lat-
tice.

An additional improvement of the search performance was
achieved by systematic recombination. As the recombina-
tion event itself is random in our standard genetic algorithm
procedures, systematic recombination of individuals may
potentially improve the evolution. The effect of systematic
recombination was also examined in simplified protein fold-
ing trials (Scheme 2). In an extensive comparison for a number
of different protein chains in the context of the simplified HP
model, this strategy gave a speed up in search speed (a factor
3/2 for a 20 residue chain) and identified the global mini-

Scheme 1Pioneer search strategy

Generation population population
(standard genetic (genetic algorithm
algorithm) with pioneer search)

i B,B,B,B,A,B,B,C B,B,B,B,A,B,B,C
i+1 B,B,D,B,B,B,B,B K,L,M,H,I,J,N,O
i+2 B,D,E,B,B,B,B,B R,Q,Z,Y,W,S,T,U

Each letter represents the exact bit string of one individual
solution trial. The population with pioneer search creates
every ten generations diverse new individuals whereas with-

out it there is a tendency to stay around a (local) solution
represented by individual B. Every ten generations, further
new search space is explored („pioneered“)

Scheme 2Systematic recombination strategy

1. Identify the best individual from the parent generation

2. Choose another individual (with linear probability to be
picked according to fitness; the individual has to differ from
the best individual)

3. Do systematic cross-over at all possible cross-over points
between the two individuals

4. Pick the best recombination result (in terms of fitness)

5. Repeat several times and add these individuals to the popu-
lation
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mum more reliably than the simple genetic algorithm alone
[8].

Current investigations in protein folding trials now with
grid free representation of the protein main chain (see Mate-
rials and Methods) indicate that particular in situations where
there are not many different solution trials in the population
(because the population has evolved for many generations),
and in a final overall competition of few best solutions the
systematic recombination is advantageous.

Judging the  quality of the models obtained

In contrast to the strategies in (i) and (ii) which may lead to a
decisive improvement in protein modelling in future, the qual-
ity of the final best structure obtained by the genetic algo-
rithm simulations is an independent and readily applicable
method to test and refine protein predictions from the ge-
netic algorithm. In test trials for this, our full main chain
protein folding simulation were used from the start, applying
our genetic algorithm fitness criteria and a test battery of
several small proteins with experimentally resolved structure
(see Materials and Methods).

The RMSD of the simulated structures to the observed
structure (considering all main chain atoms) was compared

with the fitness value per residue (Figure 3). This criterion
may be a useful tool to differentiate between successful and
less successful simulation runs in the context of our full main
chain models. On the y-axis a normalised fitness value per
residue is given, on the x-axis the number of residues in each
protein structure is plotted. For simulations (filled green cir-
cles) which were found to have good topology predictions
and RMSDs not more than 5-6 Å, the normalised fitness value
per residue increased linearly with the size of the structure
modelled in these simulations. For comparison, simulations
with higher RMSDs and bad topology predictions are shown
(filled red squares). These trials suggest that the fitness val-
ues per residue in the unsuccessful simulations is lower than
that achieved in the successful trials. This will be studied
further covering more trials and studying more protein folds.
Similarly to several other alternative criteria in judging cor-
rectness of predicted structures, this quantitative measure will
be quite helpful to judge structure quality in blind prediction
trials.

Application to genomics

In several of the genomes we are investigating, species of
specific protein families become apparent by full genomic

Table 1 Conserved gene pairs (examples) found in genome comparisons [a]

Triple genome comparisons

Methanobacterium Pyrococcus Bacillus
Thermoautotrophicum (MT) horikoschii (PH) subtilis(BS)
MT0007/0008 PH1772/1773 BS0121/0122 [b]
MT0013/0014 PH1767/1768 BS0126/0127
MT0018/0019 PH1764/1763 BS0130/0131
MT1055/1056 PH1541/1542 BS0110/0111

Helicobacter Mycoplasma Haemophilus
Pylori (HP) Pneumoniae (MP) Influenzae (HI)
HP0126/0125/0124 MP037/038/039 HI1320/1319/1318 [c]
HP0402/0403 MP048/MP049 HI1312/1311
HP1198 MP326/MP327 HI0515/0514

Two genome comparison

Helicobacter Mycoplasma
Pylori (HP) Pneumoniae (MP)
HP1346/1345 MP411/MP412 [d]

[a] The genome number identifiers indicate the position of
each gene.
[b] All these pairs are conserved ribosomal protein genes.
[c] The triple is found for ribosomal proteins. The two subunits
for phenyl tRNA synthetase are the next example, DNA-di-
rected RNA polymerase beta and beta’ subunit is the last.
The RNA polymerase is fused to one protein in HP.

[d] The example (glyceraldehyde 3-phosphate dehydrogenase;
phosphoglycerate kinase) is not conserved in HI; however,
with lower confidence also this conserved pair suggests a
direct interaction (e.g. multienzyme complex) between these
two consecutive enzymes of glycolysis. This would be bio-
logical meaningful (an adaptational advantage) and can now
be tested experimentally
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comparisons using sequence similarity (Figure 4). This con-
cerns for instance a family of outer membrane proteins in H.
pylori [18] including the proteins HP0079, HP1156, HP0472,
HP0373 and HP1525 (HP genome identifiers are given). These
proteins have no homologous sequence with known 3D struc-
ture, no characterised SMART or PFAM domains and no
transmembrane domains. However, for the non-transmem-
brane, extracellular globular domains of these proteins, we
can apply a full main chain genetic algorithm simulation to
get a first picture of this not yet well characterised protein
family. The genetic algorithm based model for the globular,
extracellular domain of the H. pylori protein HP1525 is shown
in Figure 5. Around a central sheet region the helices are
packed, C- and N-terminus are indicated. This ab initio model,
based on sequence and secondary structure prediction, may
still have a high error in some regions (higher than 5-6 Å
RMSD). However, the complete main chain topology pre-
diction provides a starting point for experiments such as prob-
ing and comparing predicted surface epitopes with available
antibodies. In particular, the relationship to H. pylori iron(III)
dicitrate transports (HP0807, HP0686, HP0608) suggested
previously [18] can now be examined by suitable experiments.
Residues found in close contact to each other as well as addi-
tional experimental data can be applied directly as a selec-
tion criterion for a refined model. Additional data from such
experiments can easily be incorporated into the simulation
with appropriate selection weights (details on weights in [19]).

Besides new protein families, new protein interactions are
revealed by our comparative genome analysis. Conserved
consecutive gene order as judged by the homologous pro-
teins encoded in the same consecutive order found in several
different prokaryotic genomes is indicative of a direct physi-
cal interaction of these encoded proteins [20]. Inclusion of
entropic forces (see above) with appropriate weights will help

Figure 5 Model of extracellular globular domain from
H.pylori protein HP1525. The Cα-chain trace was predicted
by the genetic algorithm and is shown in cartoon representa-
tion. Around a central sheet region (yellow; well packed cen-
tral two strands marked in addition in green) the helices (red)
are packed. Coil and turn regions are in blue. C- and N-ter-
minus are indicated

to refine our genetic algorithm models regarding such pro-
tein interactions. Several conserved gene pairs identified in
two new triple genome comparisons involving arachaea (top)
and H. pylori (middle) are shown in Table 1. The table shows
that conserved gene pairs are still present even if one species
included in the triple comparison is only very distantly re-
lated to the other two, demanding a high pressure for evolu-
tionary conservation of gene order of this particular genes.

Far more gene pairs can be found to be conserved in ge-
nome order if only two species are considered. An interest-
ing example for H. pylori is given in the bottom of Table 1.
As in such a case the criteria for evolutionary conservation
are less strict the prediction for a physical interaction of the
encoded proteins becomes less certain. The biological con-
text of the example shown is another independent indication,
two consecutive enzymes of a metabolic pathway would ad-
vantageously interact. This will be tested further including
protein models for the two H. pylori enzymes.

Conclusion

The current era of genome sequencing and genomics creates
an increasing demand for three dimensional predictions from
sequence [3-6]. Complete genome sequences for important
pathogens such as H. pylori are now available. For these chal-
lenges we refine genetic algorithm modelling search strate-
gies (systematic recombination, pioneer search) and investi-
gate the inclusion of entropic forces to better model protein
interactions. Our refinements are successful in the context of
the simplified HP model and are currently transferred to full
main chain models. The full main chain protein models can
be improved further by independent structure judgement cri-
teria such as the fitness per residue achieved at the end of the
simulation. The main chain topology models are applied to
study new protein interactions and protein families apparent
from genome analysis such as H. pylori but also other cur-
rently sequenced genomes.
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